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COMMENT 

Pairs of analytical eigenfunctions for the x' + Ax2/( 1 + gx') 
interaction 

G Vanden Berghe and H E De Meyer? 
Laboratorium voor Numerieke Wiskunde en Informatics$, Rijksuniversiteit Gent, 
Krijgslaan 281-S9, B9000 Gent, Belgium 

Received 7 November 1988 

Abstract. A general method is discussed for deriving pairs of exact analytical eigenfunctions 
of the x2 + Ax*/( 1 + gx2) interaction, recently discussed by Blecher and Leach and com- 
mented on by Callas. It will be shown that those pairs always consist of an odd- and an 
even-parity solution. In each case A and g are related by the conditions A < 0, g > 0 and 
A = A(g). As a result of our investigations we conjecture the possible existence of an 
infinite number of solution pairs having A and g connected by several different relations. 

1. Introduction 

The eigenvalue problem 

y"+[ E - x2 - Ax2/( 1 + g x 2 ) ] y  = O  g'0 

has been the subject of several numerical as well as analytical studies in recent years. 
Specific references to numerical approaches can be found in Fack and Vanden Berghe 
(1985). A set of exact solutions of (1.1) has been constructed by Flessas (1981,1982), 
Varma (1981), Lai and Lin (1982) and Whitehead er a1 (1982). The existence of such 
exact solutions is related to the conditions A < 0, g > 0 and A = A ( g ) ,  E = E (g). Since 
those exact solutions require a definite relationship between A and g, for a given 
permissible potential one only finds in general just one eigenvalue. Blecher and Leach 
(1987) argue that for suitable choices of A and g exact analytical eigensolutions for 
(1.1) of the form 

n 

y ( x )  = 1 uix2'+'(1 +gx2) exp(-x2/2) (1.2) 

can be constructed, whereby S is zero or one depending upon whether one is looking 
for even or odd wavefunctions. Moreover, they mention the possibility of deriving 
more than one exact eigenvalue per potential. They show that if one wishes to obtain 
the same A for a pair of solutions of the type (1.2) labelled by n,, SI, n2 and S 2 ,  the 
corresponding energies E ,  and E2 must be related by 

i = O  

E2 = El +4( n2- n,) +2(S2- SI). (1.3) 
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In a recent paper Gallas ( 1 9 8 8 )  reinvestigates the subject and shows that there exist 
pairs of solutions of the type 

(1.4) y ,  = x(1 +gx2) exp(-x2/2) 
n 

i = o  
y2= aix2'(1 +gx2) exp(-x2/2) 

with n E {1,2,3,4,5}, provided A and g are connected by the relation 

A =-(6g2+4g).  (1.6) 
In these five cases the acceptable value of g is the unique positive root of an nth 
degree polynomial. Moreover the values of g for the five values of n considered are 
curiously spaced by an almost constant difference. Gallas conjectures the possible 
existence of an infinite number of solution pairs of the type (1.4), (1.5) obeying (1.6). 
In the present comment we shall give a proof for this conjecture. As a byproduct, new 
pairs of solutions, connected to other relations between A and g, are reported. 

2. General theory 

It is important to examine whether two arbitrary solutions of the type (1.2) can form 
for the same interaction a pair of solutions of (1.1). A general investigation which we 
shall not develop here in detail shows that this is only possible when an even- and an 
odd-parity solution are combined. Let us therefore consider the following general 
eigensolutions: 

" I  

i =o  

"2 

i = O  

yl  = C aix2'+'(1 +gx2) exp(-x2/2) 

y2 = b i ~ 2 i (  1 + gx2) exp(-x2/2). 

Substituting (2.1) into ( 1 . 1 )  and multiplying by (1+gx2),  one obtains from the 
coefficients of the several powers of x a system of equations of the type 

-ai(4ig+7g - E l g +  A )  + ai+,[(2iS 5)(2i+4)g -4i - 7 +  E , ]  + ai+,(2i+5)(2i+4) = 0 
(2.3) 

which are valid for all i E [ -1, n,], provided that a, = unltl = a,,,, = 0. The last equation, 
i.e. that for i = n,,  related to the highest power of x, gives rise to the relation 

E ,  =4n i+7+A/g  (2.4) 
which shows the dependence of the E ,  eigenvalue on the ratio A/g. The substitution 
of (2.4) into the set of equations (2.3) for i E [ - 1 ,  n,-11 results in a set of n, 
homogeneous equations in the (n ,  + 1 )  coefficients ai ( i  = 0,. . . , n,). One of these 
coefficients can be chosen arbitrarily, a fact which is related to the normalisation 
condition imposed upon eigensolutions of Schrodinger equations. Choosing a, = 1 ,  . 

the resulting set of n, homogeneous relations in U , ,  a 2 ,  . . . , a,, has a non-trivial solution 
if and only if the determinant of the coefficient matrix is zero. This determinant 
condition imposes a relation between A and g. Defining 

U = A/2g (2.5) 
this condition is as follows. 
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g + 2 (  n,+ 1 )  + U  1 0 o . . .  
2gnz 6g + 2n,+ U 6 o . . .  

0 2g(n2-  1) 15g+2(n2  - 1 )  + U  15 . . .  . . .  
. . .  . . .  

. . .  2 g ( n z - i )  ( 2 i + 3 ) ( i + 2 ) g + 2 ( n 2 - i ) + u  ( i + 2 ) ( 2 i + 3 )  . . .  
, . . 4 g  ( 2 n , - I ) n 2 g + 4 + u  n,(2n2- 1) 
. . .  0 2g (2n, + l ) ( n , +  l )g  + 2 +  U 

= o  (2.12) 

3. Results 

For n, = 0 and 1 s n2  s 5 the algorithm described above reproduces the reported results 
of Gallas (1988). In order to have a better statistics on the data we have numerically 
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Table 1. The positive g roots of (2.12) for the case n, = 1 together with their differences 
Ag. The root g,  corresponds with the value of U (or A )  (2.8) with the minus sign; g, is 
related to the plus sign. 

0 
1 
2 

- 
- 
0.312 447 

- 
- 
0.826 435 

0.295 718 

0.286 615 

0.286 087 

0.296 474 

0.286 904 

0.287 253 

0.287 520 

0.287 728 

0.287 886 

0.288 009 

0.803 418 

0.799 982 

0.775 901 

0.774 5 11 

0.773 882 

0.773 544 

0.773 345 

0.773 216 

0.773 128 

0.773 067 

0.608 165 1.629 853 3 

4 0.894 780 2.409 835 

5 1.180 867 3.185 736 

6 1.467 341 3.960 247 

7 1.754 245 

2.041 498 

4.734 129 

5.507 673 8 

2.329 018 6.281 018 9 

10 

11 

2.616 746 

2.904 632 

7.054 234 

7.827 362 

12 3.192 641 8.600 429 

Table 2. The positive g roots of (2.12) for the case n I  = 2 together with their differences 
Ag. The roots g, ,  g,, g, are related to the three distinct negative U (or A )  roots of (2.9). 

L 
3 

- 
0.192 650 

- 
0.377 376 

0.677 114 

0.964 025 

1.249 350 

1.534 814 

1.820 720 

2.107 070 

2.393 792 

0.164 566 

0.168 030 

0.172 594 

0.174 942 

0.176 144 

0.176 807 

0.177 205 

- 
0.976 190 

0.299 738 0.821 791 
1.797 981 

0.286 91 1 0.784 505 
2.582 486 

0.285 325 0.777 724 
3.360 210 

0.285 464 0.775 437 
4.135 647 

0.285 908 0.774 420 
4.910 067 

0.286 348 0.773 890 
5.683 957 

0.773 580 0.286 722 
6.457 537 

0.357 216 A 

5 0.525 246 

6 0.697 840 

7 0.872 782 

1.048 926 

1.225 733 

8 

9 

10 1.402 938 
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derived the positive values of g for which (2.12) becomes zero for a range of values 
of n2 between 0 and 13. For this range of n2 values only one positive g root per n2 
value is present, with the exception of n2=0 ,  where only the trivial solution g = O  is 
found. These g values are: 0.666 666 (n, = l ) ,  1.457 427 (2), 2.234 857 (3), 3.009 794 (4), 
3.783 828 ( 5 ) ,  4.557 433 (6), 5.330 802 (7), 6.104 026 (8), 6.877 155 (9), 7.650 219 (lo), 
8.423 235 ( l l ) ,  9.196 216 (12), 9.969 171 (13). As established by Gallas and confirmed 
here, these g values are spaced by an almost constant difference Ag: 0.790 761,0.777 430, 
0.774 937, 0.774 034, 0.773 605, 0.773 369, 0.773 224, 0.773 129, 0.773 064, 0.773 016, 
0.772 981, 0.772 955. 

It is quite easy to prove that for all n2 values larger than zero at least one positive 
real g value exists when n, = 0. Substituting the expression (2.6) for U into (2.12) one 
can verify that the resulting polynomial equation has: 

(i)  one trivial g = 0 root, which can be divided out; 
(ii) after the elimination of this zero root a constant term given by 2 " ~ + ~ ( 2 n ~  - l )n2 !; 
(ii) a coefficient of the highest-degree term denoted by -(n2+2)!(2n2- l)!!. 

This means that the product of all non-zero roots of (2.12) is simply given by the 
expression 

(-l)'z+12"2+1n, ! 

(n2+2)!(2n2 - 3)!!' 

This means that for n2 odd, one always obtains at least one positive real g root. For 
n, even the product of all roots (complex and real) is, by (3.1), negative; this means 
that at least one negative real g root and then also one positive real g root is present. 
Thus in all cases this simple reasoning shows that at least one positive real root can 
be found for (2.12). The numerical verification confirms the uniqueness of this positive 
root for O <  n 2 s  13. 

For n, = 1 or 2, two or three distinct values of U (see (2.8) and (2.9)) are respectively 
available for each positive g value. This means that one can hope that for each of 
these U values (2.12) can be fulfilled for at least one positive g value. The positive 
roots of (2.12) have been determined numerically for n,  = 1 , 2  and for several values 
of n,, These results, together with the Ag differences, are reported in table 1 and table 
2, respectively. For the n, values considered, we find that for each U value, which is 
a solution of (2.7) (n, = 1) or (2.9) (n,  = 2), there exists a positive g value for which 
pairs of solutions of the type (2.1), (2.2) of (1.1) can be constructed provided that 
n, > n, . The fact that the U values which occur are irrational expressions with respect 
to g makes it impossible to prove this statement in general with techniques analogous 
to those used for the n ,  = 0 case. We can also observe in table 1 and table 2 that the 
g values obtained are approximately spaced by a constant difference and that the Ag 
values found for the n, = 0 case approximately occur again for other n, values. The 
second Ag values present in the n,  = 1 case (table 1) reappear in the n, = 2 case (table 
2). It does not seem that the Ag converge to a constant as conjectured by Gallas, 
since, as can be observed in both tables, some of the tabulated Ag values pass through 
a minimum and then increase further on with increasing n,. 

4. Conclusions 

The eigenproblem (1.1 ) admits solution pairs consisting of an odd- and an even-parity 
eigenfunction, both expressed analytically as the product of (1 + gx') exp(-x2/2) and 
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a single polynomial as indicated in (2.1) and (2.2). From the cases considered, i.e. 
odd-parity eigenfunctions with polynomial parts of degree one ( n ,  = 0), three ( n ,  = 1) 
and five ( n ,  = 2), we can conjecture that the polynomial part of the even-parity 
eigensolutions must be of degree n ,  + 1 or higher. For a chosen and fixed value of n ,  , 
there exist n ,  + 1 relations between A and g, such that h < 0, g > 0 and A = A ( g ) .  For 
each acceptable A value, the cases under consideration show the possible existence of 
an infinite number of solution pairs. For n, = 0 we have proved that this is the case. 
For n ,  > 0 it should be very interesting to prove or disprove this conjecture and to give 
an explanation for the behaviour of the observed g spacing. 

References 

Blecher M H and Leach P G L 1987 J. Phys. A: Math. Gen. 20 5923 
Fack V and Vanden Berghe G 1985 J. Phys. A: Math. Gen. 18 3355 
Flessas G 1981 Phys. Lett. 83A 121 
- 1982 J. Phys. A: Math. Gen. 15 L97 
Gallas J A C 1988 J. Phys. A: Moth. Gen. 21 3393 
Lai C and Lin H 1982 J. Phys. A: Math. Gen. 15 1495 
Varma V 1981 J. Phys. A: Math. Gen. 14 L489 
Whitehead R, Watt A, Flessas G and Nagarajan M 1982 J. Phys. A: Math. Gen. 15 1217 


